Ontology-based modeling, integration, and analysis of heterogeneous clinical, pathological, and molecular kidney data for precision medicine
Presentation Time: 11:15 AM - 11:30 AM
Abstract Keywords: Data Standards, Precision Medicine, Biomarkers, Data Mining, Bioinformatics, Data Sharing, Omics (genomics, metabolomics, proteomics, transcriptomics, etc.) and Integrative Analyses
Primary Track: Foundations
Programmatic Theme: Academic Informatics / LIEAF
Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease statuses. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.
Speaker(s):
Alexander Diehl, PhD
University at Buffalo
Presentation Time: 11:15 AM - 11:30 AM
Abstract Keywords: Data Standards, Precision Medicine, Biomarkers, Data Mining, Bioinformatics, Data Sharing, Omics (genomics, metabolomics, proteomics, transcriptomics, etc.) and Integrative Analyses
Primary Track: Foundations
Programmatic Theme: Academic Informatics / LIEAF
Many data resources generate, process, store, or provide kidney related molecular, pathological, and clinical data. Reference ontologies offer an opportunity to support knowledge and data integration. The Kidney Precision Medicine Project (KPMP) team contributed to the representation and addition of 329 kidney phenotype terms to the Human Phenotype Ontology (HPO), and identified many subcategories of acute kidney injury (AKI) or chronic kidney disease (CKD). The Kidney Tissue Atlas Ontology (KTAO) imports and integrates kidney-related terms from existing ontologies (e.g., HPO, CL, and Uberon) and represents 259 kidney-related biomarkers. We also developed a precision medicine metadata ontology (PMMO) to integrate 50 variables from KPMP and CZ CellxGene data resources and applied PMMO for integrative kidney data analysis. The gene expression profiles of kidney gene biomarkers were specifically analyzed under healthy control or AKI/CKD disease statuses. This work demonstrates how ontology-based approaches support multi-domain data and knowledge integration in precision medicine.
Speaker(s):
Alexander Diehl, PhD
University at Buffalo
Ontology-based modeling, integration, and analysis of heterogeneous clinical, pathological, and molecular kidney data for precision medicine
Category
Paper - Regular